
Analyzing Plan Diagrams of Database Query
Optimizers

Thomas Mayer

KIT, Institut für Programmstrukturen und Datenorganisation (IPD),
D-76131 Karlsruhe, Germany

Abstract. This report concentrates on the visualization and analysis
of the behavior of query optimizers. In the paper [6] ”Analyzing Plan
Diagrams of Database Query Optimizers” the authors visualize the query
plans and corresponding estimated costs of a SQL-query with variable
parameters in one- or two-dimensional selectivity spaces. Therefore, they
introduce Plan and Cost Diagrams. The authors show that the number
of query plans of each tested commercial database is surprisingly high.
Moreover, they determine a non-motivated fragmentation of the Plan
Diagrams. To improve this situation the authors introduce Reduced Plan
Diagrams which decrease the number of query plans by summarizing the
query plans of Plan Diagrams with limited additional estimated costs.
Finally, the authors state that the assumptions of Parametric Query
Optimization (PQO) do not hold in practice. They suggest the use of
Reduced Plan Diagrams for PQO. [6]

1 Introduction

1.1 The Selectivity space

Orders

Customers

Selectivity Space

251366

13

Fig. 1. Two-dimensional Selectivity Space

2

Relational selectivity space is a set of joined relations including conditions on
attributes of these relations and the values of these attributes. The dimension-
ality of a selectivity space depends on the number of attributes with conditions.
Using two conditions on 2 attributes, it is possible to navigate through that
2-dimensional selectivity space as demonstrated in figure 1: Given two joined
relations customers and orders, we can use two conditions, orderID = 13 and
customerID = 251366 to select a single point. If we use ”≤” conditions instead,
we can select from no data of any dimension (down-left corner) to all data of
any dimension (top-right corner). In our example the conditions would look like
orderID ≤ 13 and customerID ≤ 251366.

In the following, the word space will be a synonym for selectivity space.
We will only consider two-dimensional spaces to make visualization easier. In
practice, the selectivity space can have an arbitrary number of dimensions.

1.2 The Relational Database Management System

Relational Database
Management System

(RDBMS)

Database 1 Database 2 Database 3

Query
Optimizer

Database System

Client
SQL

Result

Parser

...

Fig. 2. RDBMS scheme

Relational Database Management Systems (RDBMS) offer the possibility to
normalize the data into relations. For operations on that data, a declarative
language called Structured Query Language (SQL) is usually used.

The RDBMS needs to carry out several steps to execute an SQL query.
Figure 2 shows a typical execution stack. The parser checks for proper syntax
and makes it usable for internal purposes. Afterwards, a query optimizer decides

3

how to execute the query (We will elaborate on this more later). Finally the
query will be executed and the result of the query will be returned to the user
as demonstrated in figure 2.

1.3 The Query Plan

Index nested Loop
(A.x=C.x)

Merge-Join
(A.x=B.x)

Sort Sort

Table Scan A Table Scan B

Index Scan C

Fig. 3. Operator Tree

A query plan (or query execution plan) is a strategy to execute a SQL state-
ment. Therefore, physical operators such as sort, sequential scan, index scan,
nested-loop join and sort-merge join can be arranged in an operator tree. Such
an operator tree represents a query plan [1]. The query plan does not affect the
result of the query. But as the order can differ and different operators are possible
to execute the query, many different query plans are possible as demonstrated
in example 1. They span the search space [1].

Example 1. Given two relations A and B while A.id is a foreign key of B.Aid.
v idx is an index on the attribute v. Also given is a SQL query:

select A.id, B.id,u,v from A inner join B on (A.id=B.Aid) where v=0;

A id u
1 x
2 y
3 z

B id Aid v
1 1 0
2 1 1
3 2 2
4 2 0
5 3 0
6 3 1

Result A.id B.id u v
1 1 x 0
2 4 y 0
3 5 z 0

The query can be executed as follows:
Plan P1: AB (first scan A, then join B). The estimated cost of scanning A

is 3 because all rows have to be considered. As the relation B contains 6 rows,
it might be estimated that every row in A has two child rows in B. This would
mean that we can estimate the costs like this: cost(AB) = 3 · 2 = 6.

4

Plan P2: BA (first scan B, then join A). The estimated cost of B scanning is
about 3 because it might be estimated that when using index v idx about 3 rows
match the condition v = 0. As the join condition (A.id = B.Aid) corresponds
to the foreign key relation, exactly one row in A will match to a row in B. As
a result, we can estimate the costs as follows: cost(BA) = 3 · 1 = 3. Both plans
have the same result but the optimizer should choose plan P2 as it is expected
to have less costs.

1.4 The Optimizer

Estimator

Query
Transformer

Plan
Generator

Transformed Query

Query and estimates

Parsed Query
(from Parser)

Query Plan
(to Row Source Generator)

Dictionary

Fig. 4. Optimizer of a commercial RDBMS [4]

The optimizer is a part of the RDBMS which decides which is the estimated
best strategy to execute the query. To have a closer look on optimizers, an imple-
mentation [4] of a commercial RDBMS as shown in figure 4 can be considered:
First, the parsed query must pass the query transformer inside the optimizer.
The query transformer rewrites the query using techniques like:

– view merging

– predicate pushing

– subquery unnesting (as demonstrated in example 2)

– query rewrite with materialized views

– or-expansion

5

Example 2. Given the relations of example 1. Using subquery unnesting, a query
including a subquery

select A.id, u from A where A.id in (select Aid from B where v=0);

can be transformed into a query using a join instead.

select A.id, u from A inner join B on (A.id=B.Aid) where v=0;

Next, the transformed query passes the estimator [4]. This section estimates
the costs (e.g. number of rows) of different operations which might be relevant to
execute the query. Therefore, a dictionary (which contains statistical information
about the data) can be used to be able to estimate the number of rows which
match a where clause. It is a requirement for the estimations in example 1 that
the dictionary contains information about the number of rows of each relation
and spreading of values in attribute v. Finally, the Plan Generator is determining
the expected optimal query plan to execute the query.

1.5 The Explain Statement in SQL

Many RDBMS offer the possibility to determine the query plan that the op-
timizer selects to execute a SQL query. Therefore, a user can send an explain
statement to the RDBMS. An explain statement in SQL is a statement which
consists of the keyword ”explain” followed by a select statement. An example is
given in example 3. The select statement will then be parsed by the parser of the
RDBMS. Afterwards, the optimizer will decide which is the expected optimal
query plan to execute the query as demonstrated in example 3 with the same
data as in example 1. The corresponding query plan is the result of the explain
statement and will be returned to the user.

Example 3.
explain

select A.id, B.id,u,v

from A inner join B on (A.id=B.Aid)

where v=0;

QUERY PLAN

Hash Join (cost=1.07..2.18 rows=3 width=6)

Hash Cond: (b.aid = a.id)

-> Seq Scan on b (cost=0.00..1.07 rows=3 width=8)

Filter: (p = 0)

-> Hash (cost=1.03..1.03 rows=3 width=6)

-> Seq Scan on a (cost=0.00..1.03 rows=3 width=6)

6

1.6 Introduction into the topic

[3] introduces a tool to visualize which query plan is used by a database at
each point of the selectivity space. Using the visualization of query plans over
the whole selectivity space, it is possible to determine the stability of query
optimizers. An optimizer is relatively stable if only few query plans are used and
if these query plans cover convex areas of the selectivity space.

It is expected behavior that more selectivity leads to more costs, so the costs
should increase monotonically. Additionally, little more selectivity should lead to
little more increase of costs. However, in case the estimated costs do not corre-
spond to the execution costs of a plan, two things can go wrong when considering
two neighbored points of two different plans in the space: First, the execution
costs can decrease when increasing the selectivity. Second, the execution costs
could increase dramatically, because the optimizer could not determine optimal-
ity regions in that way, that the plan is changed when a break even point from
one plan to another plan is reached. Despite from real execution costs, highly
intricate patterns and irregular boundaries in plan optimality regions indicate
strongly non-linear cost models [5].

In such a RDBMS with a non-stable optimizer it can happen at several points
of the selectivity space that a query is running much longer than expected by
optimizer and user. The problem is that it is very hard to figure out under which
circumstances such a problem occurs and how to debug it. The problem might
even worsen if the data changes continuously. Additionally, a high number of
query plans can mean that there is lots of overhead inside the optimizer [6].

As a result, there is to say that it would be great if the number of query
plans and the number of their occurrences over the selectivity space could be
reduced, while the cost increase for such a reduction should be very limited.

The authors compare the number of plans and the stability of optimizers.
They do not consider the execution time of queries which means that they do
not rate or compare the speed of databases.

2 The Visualisation of Query Plans and Costs

2.1 Plan Diagrams

By increasing the selectivity stepwise in each dimension, it is possible to de-
termine the estimated costs at each point by sending an expect statement at
every point of the selectivity space by varying one or more conditions until the
space is covered. Picassso [3] is a tool which is automatically sending these ex-
plain statements to the RDBMS. The optimizer of the RDBMS will then return
the corresponding query plan for every explain statement which represents one
point in the selectivity space. Picasso then plots every plan in a different color
as demonstrated in figure 6. Using a query grid of 100 x 100 means that 10,000
explain statements are sent to the RDBMS. For our purposes, a grid of 100 x
100 is enough.

7

Fig. 5. Plan Diagram

Create „EXPLAIN SELECT … WHERE“
SQL-Statement with condition(s) SQL

RDBMS

Add new point
to the Plan Diagram

Output
Diagram

Optimizer

Query Plan

Fig. 6. Creation of Plan Diagrams

As a result, a Plan Diagram is created. The Plan Diagram shows which
query plan will be used by the optimizer at which point of the space. This is
demonstrated in figure 5.

2.2 Cost Diagrams

A Cost Diagram adds the ”cost” dimension into the plan diagram. For a point
in selectivity space, it shows the expected costs of the intended execution plan.
Picasso is still coloring the surface of the 3-dimensional diagram so that one can
see which plan is producing the costs as demonstrated in figure 7.

2.3 Reduced Plan Diagrams

The reduced plan diagram is generated by reducing the number of plans and
the number of occurrences of plans without increasing estimated costs more

8

Fig. 7. Cost Diagram

Plan Diagram Reduced Plan Diagram
5% allowed increase of costs

Reduced Plan Diagram
10% allowed increase of costs

Fig. 8. Reduced Plan Diagram

than a plan optimality tolerance threshold (=maximum allowed cost increase)
as demonstrated in figure 8.

According to the Cost Domination Principle [2], it is expected that the op-
timizer cost functions are monotonically non-decreasing with increasing base
relation selectivities and result cardinalities [6]. As shown in figure 9, when pass-
ing the space in direction to less selectivity, the query plan of one point can be
replaced by a query plan with more selectivity (we take the query plan with
smallest costs in direction top or right) if that plan does not exceed the maxi-
mum allowed cost increase of the costs of the old plan. According to the Cost
Domination Principle, the costs of the point with more selectivity represents an
upper bound of the costs for the point with less selectivity. This procedure is
very conservative, as we have less selectivity, but we calculate with the costs of
the point with more selectivity.

Finally, an entire plan can be swallowed if and only if all its query points
can be swallowed by either a single plan or a group of plans. The authors are
ordering the plans in ascending order of size and then pass the list checking for
the possibility of swallowing each plan.

9

Fig. 9. Dominating Quadrant

2.4 Estimated Cost Diagram vs. Execution Cost Diagram

As already described, the estimated costs can be determined by sending an
explain select ... statement to the RDBMS. The measurement of the costs is
usually the number of rows that are expected to be affected. As the query itself is
not executed, a 10x10 diagram can be created in 10s (using TPC-H query 9). The
optimizer’s decisions base on static estimations. That means that two neighbored
points in the selectivity space with the same and also with different query plans
should have nearly the same estimated costs, while increased selectivity should
lead to more estimated costs. That is why the estimated cost diagram should
always be monotonic.

To produce an execution cost diagram, Picasso will execute the select state-
ment and measure the execution time. Therefore, the measurement of the costs
is seconds and the creation time of an execution cost diagram is much higher
(e.g. 250s for a 10x10 grid with TPC-H query 9). The execution cost diagram
might not be monotonic, e.g. if the estimations were not precise.

Fig. 10. Estimated Cost Diagram and Execution Cost Diagram

10

2.5 Examples of plan diagrams, cost diagrams, reduced diagrams

To get an idea how the diagrams can look like, we have a closer look on diagrams
generated by Picasso using some TPC-H queries and a postgresql RDBMS.

Fig. 11. TPC-H Query 7: Plan Diagram, Cost Diagram, Reduced Plan Diagram

The plan diagram of TPC-H query 7 in figure 11 uses four different query
plans while the query plan with the smallest coverage covers only 1.78% of the
space. There are several small segments and the diagram is not smooth. The
corresponding cost diagram is monotonous but it does not look linear at all. In
the reduced plan diagram the space is covered by only two query plans with an
average cost increase of ≤ 0.72% and a maximum cost increase of 6.73%.

Fig. 12. TPC-H Query 8: Plan Diagram, Cost Diagram, Reduced Plan Diagram

The plan diagram of TPC-H query 8 in figure 12 uses nine different query
plans while the query plan with the smallest coverage covers only 0.02% of
the space. There are several small segments and the diagram is not smooth.
The corresponding cost diagram is monotonous and it looks quite linear. In the

11

reduced plan diagram the space is covered by only four query plans with an
average cost increase of ≤ 0.41% and a maximum cost increase of 9.8%.

Fig. 13. TPC-H Query 9: Plan Diagram, Cost Diagram, Reduced Plan Diagram

The plan diagram of TPC-H query 9 in figure 13 uses 22 different query plans
while the 14 query plans with the smallest coverage each cover less than 0.5% of
the space. There are several small segments and the diagram is not smooth at
all. The corresponding cost diagram is monotonous and it looks quite linear. In
the reduced plan diagram the space is covered by only ten query plans with an
average cost increase of ≤ 0.15% and a maximum cost increase of 9.15%.

2.6 Comparison of Optimizers

TPC-H Query #Plans %plans for 80%

2 2 100.00%

5 8 37.50%

7 4 50.00%

8 9 33.33%

9 22 13.64%

10 9 22.22%

18 7 14.29%

21 4 25.00%

postgre 8.13 37.00%

OptA 28.7 17.00%

OptB 24.5 23.00%

OptC 28.8 16.00%

Table 1. Comparison of Optimizers

12

The commercial optimizers OptA, OptB, OptC use in average between 24.5
and 28.8 different query plans to cover the selectivity space for the mentioned
TPC-H queries. In contrary, postgre only uses 8.13 plans in average to cover the
selectivity space. The commercial optimizers need in average between 16% and
23% of the query plans to cover 80% of the selectivity space. In contrary, postgre
needs in average 37% of the plans to cover 80% of the selectivity space. As a
result there is to say, that the optimizer of postgre is much more stable than
the tested commercial optimizers. However, although postgre’s optimizer seems
to make much less fine-grained plan choices, postgre’s behavior is similar to the
behavior of the tested commercial databases.

3 Linearity of Cost Diagrams

3.1 The Linearity of database operations

First, we want to consider join operations: If the join is done using a nested loop
join [7], the costs are in O(|R| · |S|) for relations R,S. If |R| is fixed and |S|
increased by factor a, then the costs increase linearly by factor a as long as we
use the same plan. In case an index can be used for the join condition using an
indexed nested loop join improves the situation. Now we run through relation
R and search for corresponding rows in S using an index. The costs are then
in O(|R| · log |S|) which means that when increasing |S| by factor a the costs
increase by factor log a. In case an index can be used for both attributes of a
join condition the relations only have to be merged using a merge-scan-join [7]
which is possible in O(|R|+ |S|). Increasing |S| by factor a will increase costs by
≤ a. A hash-join [7] can also be done in O(|R|+ |S|). Finally we can state that
a set of join operators exists while these join operators have linear cost increase
when the selectivity of one dimension is increased.

As the TPC-H queries also make use of order by clauses, we also have to
consider the costs of sorting the result of a query. In some cases an index can be
used for this task which would mean that sorting is possible in O(n) when sorting
n tuples. But in most cases, no index is available or the order was destroyed by
other operations (e.g. hash join). In that case the result of a query can only be
sorted in O(n log n) by using sort algorithms like merge-sort. However, we do not
necessarily see this in cost diagrams: In case the expected result of the query is
relatively small and fits into memory the sorting procedure could be considered
relatively cheap compared to operations with lots of disk I/O like table scan etc.
Additionally, more selectivity does not necessarily mean a bigger result, e.g. if
in the query plan a group by is before a sort by operation as the last operation,
the sort by operation will not become more expensive in case the number of
tuples does not grow after the group by. Only the proceding operations might
become more expensive. A group by is used in TPC-H query 7. However, if an
increase of |S| by factor a (with a > 1) increases the number of tuples in the
result by factor a the corresponding cost for the sorting operation will be in
O(a|S| log a|S|) which is not linear by definition.

13

3.2 Real world effects in Estimated Cost Diagrams

cu
st

om
er

s.
c_

ac
ct

ba
l

orders.o_total_price

Selectivity Space

Fig. 14. TPC-H Query 7: Linearity in one dimension within one plan

When we consider figure 11 we could think that estimated costs were increas-
ing more than linear when moving from point (0/0) to (8/8) of the selectivity
space. The reason for that is that postgre is doing an indexed nested loop join
when using plan P3 while O(|R| · log |S|) can be more than linear in case both
|R| and |S| are increased. Only if we consider the expected cost development in
one dimension we get a linear increase of expected costs within one query plan
as demonstrated in fig. 14. However, the different plans have different gradients.
While P3 uses two nested loop joins, P1 and P2 use one hash join and one nested
loop join which means that the gradient can be more flat and the estimated cost
diagram even looks linear when increasing two dimensions. However, the plan
P1 should look more stable and Plan P2 should not appear at all because Plan
P1 is expected to be cheaper than P2 again when selectivity increases.

4 Relationship to Parametric Query Optimization (PQO)

The goal of Parametric Query Optimization (PQO) is to apriori identify the
optimal set of plans for the entire relational selectivity space at compile time. At
run time, the actual selectivity parameters can be used to identify the best plan.
The expectation is that this is much faster than than optimizing the query from
scratch [6]. As mentioned in [6], most of the literature is based on assuming cost
functions that result in about the following:

1. Plan Convexity : If a plan P is optimal at point A and point B, then it is
optimal at all points between the two points.

2. Plan Uniqueness: An optimal plan P appears at only one contiguous region
in the entire space.

14

3. Plan Homogeneity : An optimal plan P is optimal within the entire region
enclosed by its plan boundaries.

(3)

(1)

(2)

Fig. 15. Assumptions (1), (2), (3) do not hold true in practice.

However, [6] shows that all three assumptions do not hold true for three
tested commercial optimizers. In figure 15 the same result is shown for postgre:
No plan convexity is given for the blue plan (1). The plan uniqueness is not given
for the violet plan, because it occurs twice (2). And the plan homogeneity is not
given for the blue plan because within its plan boundaries there are some little
dots (3).

[6] states that the gap between theory and practice concerning the assump-
tions is considerably narrowed if reduced plan diagrams are used for PQO. How-
ever, it is speculative, that all assumptions are completely fullfilled as the reduced
plan diagram depends on the maximum allowed cost increase. E.g. figure 12 and
figure 13 show that reduced plan diagrams do not necesarily correspond to the
assumptions of PQO.

5 Conclusion

In this report we have analyzed the behavior of two-dimensional plan and cost
diagrams produced by modern optimizers on queries based on the TPC-H bench-
mark. This report shows that many of the queries result in highly intricate di-
agrams with many different plans covering the space. Further was shown that
typically 80 percent of the space are covered by 20-37 percent of the plans.

Next, we have analyzed when linearity of expected cost diagrams can be
expected. In case selectivity is increased in the direction of one dimension, the
expected costs increase linearly. Linearity is even given when increasing selectiv-
ity into two dimensions and a using a merge-scan-join or a hash join. When using
different plans which should, at their boarder, have the same expected costs as
their neighbors, the corresponding chart might not look linear as costs increase
differently.

15

Finally, we have shown that the assumptions for PQO do not hold in practice.
All tested optimizers had patterns that conflict to these assumptions. It would
be better to use reduced plan diagrams instead for PQO because reduced plan
diagrams are more stable and suitable to the assumptions for PQO.

6 Appendix

6.1 Testbed

All Diagrams have been produced in the following testbed environment (other-
wise mentioned):

– Picasso 2.0

– TPC-H 2.9.0, default settings

– postgresql 8.4.2, default settings

– java-6-sun-1.6.0.15

– Ubuntu 9.10, Kernel 2.6.31-18-generic

– Pentium-M (32 bit), 1,86 GHz, 1GB RAM, 250 GB hard disk

6.2 Using TPC-H with postgresql

Installation and test of a postgresql RDBMS using ubuntu 9.10 32 bit:

$sudo apt-get install postgresql tofrodos

$sudo su postgres

$psql

psql (8.4.2)

[...]

postgres=# create database test;

CREATE DATABASE

postgres=# \c test

psql (8.4.2)

Sie sind jetzt verbunden mit der Datenbank test.

test=# create table newtable (field int);

CREATE TABLE

test=# \d

Liste der Relationen

Schema | Name | Typ | Eigentmer

--------+----------+-------+------------

public | newtable | table | postgres

(1 Zeile)

Installation of DBGEN and QGEN

16

tar -xvpzf tpch_2_9_0.tar.gz

$cp makefile.suite makefile

$vim makefile

CC = gcc

Current values for DATABASE are: INFORMIX, DB2, TDAT (Teradata)

SQLSERVER, SYBASE

Current values for MACHINE are: ATT, DOS, HP, IBM, ICL, MVS,

SGI, SUN, U2200, VMS, LINUX, WIN32

Current values for WORKLOAD are: TPCH

DATABASE= INFORMIX

MACHINE = LINUX

WORKLOAD = TPCH

Create the TPC-H data for the relations:

$./dbgen

$ls *.tbl

customer.tbl lineitem.tbl nation.tbl orders.tbl partsupp.tbl

part.tbl region.tbl supplier.tbl

generate queries (but they are not needed as they also come along with Picasso)

$mv queries/*.* .

$./qgen > queries.sql

load dbscheme and data:

$chmod 664 dss.ddl

$chmod 664 dss.ri

$chmod 664 *.sql

$sudo su postgres

$psql

psql (8.4.2)

[...]

postgres=# create database tpch;

CREATE DATABASE

postgres=# \c tpch

psql (8.4.2)

Sie sind jetzt verbunden mit der Datenbank tpch.

tpch=# \i dss.ddl

CREATE TABLE

CREATE TABLE

tpch=# \d

Liste der Relationen

Schema | Name | Typ | Eigentmer

--------+----------+-------+------------

17

public | customer | table | postgres

public | lineitem | table | postgres

public | nation | table | postgres

public | orders | table | postgres

public | part | table | postgres

public | partsupp | table | postgres

public | region | table | postgres

public | supplier | table | postgres

(8 Zeilen)

Import the TPC-H data:

copy customer from ’/.../customer.tbl’ with delimiter as ’|’;

postgresql requires that delimiter does not appear at the end of each line.
Workaround to set a value at the end of each line: First, create a script workaround.sh
and execute the script and the following sql statements for each relation:

#!/bin/bash

while read record

do

echo "$record""0"

done

$./workaround.sh <customer.tlb >customer.tlbx

alter table customer add x int;

copy customer from ’/.../customer.tblx’ with delimiter as ’|’;

alter table customer drop x;

add indexes: edit dss.ri and outcomment this:

-- CONNECT TO TPCD;

remove all TPCD.
remove all constraint names. Example:

old:

ALTER TABLE NATION

ADD FOREIGN KEY NATION_FK1 (N_REGIONKEY) references REGION;

new:

ALTER TABLE NATION

ADD FOREIGN KEY (N_REGIONKEY) references REGION;

sudo su postgres

\c tpch

\i dss.ri

-- create statistical summaries

vacuum analyze;

-- change password

alter user postgres with password ’1234’;

18

6.3 Setting up Picasso

PICASSO server and client: no spaces are allowed in current directory name!

tar -xvpzf picasso2.0.tgz

change rights and linewraps:

find picasso2.0 -type d -exec chmod 755 {} \;

find picasso2.0 -name "*.sh" -exec chmod 700 {} \;

find picasso2.0 -name "*.sh" -exec dos2unix {} \;

cd PicassoRun/

cd Unix

chmod 700 activatedb.sh

vim activatedb.sh

Insert as first line:

#!/bin/bash

$dos2unix activatedb.sh

$./activatedb.sh

edit compileServer.sh: Write classpath into one line.

$./compileServer.sh

Picasso Client:

$sudo apt-get install libjava3d-java

(Version 1.5.2 is installed)

$cd /usr/lib/jvm/java-6-sun/jre/lib/i386

$sudo ln -s /usr/lib/jni/libj3dcore-ogl.so

Remove all java exceptions by updating the client’s libraries:

$cd Picasso/Libraries

$mv j3d* ./../.

$ln -s /usr/share/java/j3dutils.jar

$ln -s /usr/share/java/j3dcore.jar

$mv vecmath.jar ./../.

$ln -s /usr/share/java/vecmath.jar

$mv swing-layout-1.0.jar ./../.

$ln -s /usr/lib/jvm/java-6-sun-1.6.0.15/lib/visualvm/platform9/

modules/ext/swing-layout-1.0.3.jar $swing-layout-1.0.jar

$cd PicassoRun/Unix

$./compileClient.sh

19

Run Picasso server and client:

$cd PicassoRun/Unix

Edit runServer.sh: Write classpath into one line:

$./runServer.sh

$./runClient.sh

Enter localhost port 4444 ok

Setup database connection:

DBConnection->new

Connection Descriptor: pg

Machine: localhost

Engine: POSTGRES

Port: 5432

Database: tpch

Schema: public

User: postgres

Pasword: ****

References

1. Surajit Chaudhuri. An overview of query optimization in relational systems. Proc.
of the 17th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, 1998.

2. A. Hulgeri and S. Sudarshan. Anipqo: Almost non-intrusive parametric query opti-
mization for nonlinear cost functions. Proc. of 29th Intl. Conf. on Very Large Data
Bases (VLDB), September 2003.

3. Indian Institute of Science. The Picasso Tool. http://dsl.serc.iisc.ernet.in/

projects/PICASSO, 2005. [Online; accessed 22-February-2010].
4. Oracle. The Query Optimizer. http://download.oracle.com/docs/cd/B19306_

01/server.102/b14211/optimops.htm, 2010. [Online; accessed 21-February-2010].
5. Naveen Reddy. Next generation relational query optimizers. Master Thesis, June

2003.
6. Naveen Reddy and Jayant R. Haritsa. Analyzing plan diagrams of database query

optimizers. Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB), September
2005.

7. Karsten Schmidt. Vorlesung Datenbankadministration. http://

wwwlgis.informatik.uni-kl.de/cms/fileadmin/users/kschmidt/db2-zert/

07-AnfrageoptimierungI.pdf, 2008. [Online; accessed 08-March-2010].
8. Janet L. Wiener, Harumi Kuno, and Goetz Graefe. Performance Evaluation and

Benchmarking. Springer Berlin / Heidelberg, June 2003.

